首页 | 本学科首页   官方微博 | 高级检索  
     


Finite viscoelasticity of filled rubber: experiments and numerical simulation
Authors:A. D. Drozdov  A. Dorfmann
Affiliation:(1) Institute of Structural Engineering, 82 Peter Jordan Street, 1190 Vienna, Austria e-mail: drozdov@iprod.auc.dk, AT
Abstract:Summary  Constitutive equations are derived for the viscoelastic behavior of particle-re-inforced elastomers at isothermal deformation with finite strain. A filled rubber is thought of as a composite medium where inclusions with high and low concentrations of junctions between chains are randomly distributed in the bulk material. The characteristic length of the inhomogeneities is assumed to be small compared to the size of the specimen and substantially exceed the radius of gyration for macromolecules. Inclusions with high concentration of junctions are associated with regions of suppressed mobility of chains that surround isolated clusters and/or the secondary network of filler. Regions with low concentration of junctions arise during the preparation process due to a heterogeneity in the spatial distribution of the cross-linker and the filler. With reference to the concept of transient networks, the time-dependent response of an elastomer is attribute d to thermally activated rearrangement of strands in the domains with low concentration of junctions. Stress–strain relations for particle-reinforced rubber are developed by using the laws of thermodynamics. Adjustable parameters in the constitutive equations are found by fitting experimental data in tensile relaxation tests for several grades of unfilled and carbon black-filled rubber. It is demonstrated that even at moderate finite deformations (with axial elongations up to 100%), the characteristic rate of relaxation is noticeably affected by strain. Unlike glassy polymers, where the rate of relaxation increases with longitudinal strain, the growth of the elongation ratio results in a decrease in the relaxation rate for natural rubber (unfilled or particle-reinforced). The latter may be explained by (partial) crystallization of chains in the regions with low concentration of junctions. Received 16 October 2001; accepted for publication 25 June 2002 Present address: A. D. Drozdov Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg, Denmark We would like to express our gratitude to Dr. K. Fuller (TARRC, UK) for providing us with rubber specimens and to Prof. P. Haupt and Dr. S. Hartmann (University of Kassel, Germany) for sending their experimental data. We are indebted to Mr. G. Seifritz for his assistance in performing mechanical tests. ADD acknowledges stimulating discussions with Prof. N. Aksel (University of Bayreuth, Germany).
Keywords:Viscoelasticity   Finite strain   Particle-reinforced rubber   Transient network   Constitutive equation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号