首页 | 本学科首页   官方微博 | 高级检索  
     


Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode
Authors:Yunhua Deng  Suqin Liu  Xinxing Liang
Affiliation:1. Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
Abstract:Carbon surface-modified Li-excess layered oxide solid solution Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode is fabricated through a liquid phase route using polyvinylpyrrolidone as carbon source. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the crystal structure and the chemical states of elements for Li[Li0.2Mn0.54Ni0.13Co0.13]O2 are kept after carbon surface treatment. The high-resolution transmission electron microscopy demonstrated the existence of very little carbon on the surface and the clear boundary after carbon treatment. The carbon surface-modified sample delivers a discharge capacity of 293.2 mAh?g?1 at C/10 rate (suppose 1 C rate?=?250 mA?g?1) and 191.6 mAh?g?1 at 1 C rate between 2.0 and 4.8 V; the capacity retention rate is ~86 % after 70 cycles at 1 C rate. Superior electrochemical properties can be contributed to the carbon surface modification in these aspects including minimizing nanoparticle aggregation and cell polarization, increasing the electronic conductivity, suppressing the elimination of oxide ion vacancies, as well as suppressing the formation of the thick solid electrolyte interfacial layer. Moreover, the annealing process of carbon surface modification might be able to consume Li2CO3 impurity partly and cause the recrystallization of the surface disordered layer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号