首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of reaction temperature on intercalation of octyltrimethylammonium chloride into kaolinite
Authors:Wang  Ding  Liu  Qinfu  Cheng  Hongfei  Zhang  Shuai  Zuo  Xiaochao
Affiliation:1.School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China
;
Abstract:

The structural property, thermal behavior, and morphology of octyltrimethylammonium chloride–kaolinite complexes prepared at different reaction temperatures were studied by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry–differential scanning calorimetry, and scanning electron microscope. The present study demonstrated that the arrangement model of octyltrimethylammonium cations (OTAC+) within the kaolinite interlayer space was independent of reaction temperature. The alkyl chains adopted a similar rigid paraffin-bilayer arrangement with different tilted angles. Although the intercalation led to an increased number of gauche conformers, the number of nonlinear conformers remained constant with increasing temperature. With increasing temperature, the number of trans conformers continuously augmented and resulted in decreased gauche/trans ratio. Therefore, the molecular environment remained solid like. Simultaneously, the surfactant packing density gradually increased, along with the decreasing water content in the organoclays. This effect improved thermal stability and hydrophobicity. The thermal decomposition processes of the kaolinite–OTAC+ complex can be divided into four steps. Furthermore, SEM images showed that the morphology of these complexes was strongly dependent on the given temperature. In general, increasing the temperature within the limited given temperature (≤70 °C) promoted the transformation from platy layers to nanoscrolls. Most of the transformed nanoscrolls were acquired in the products prepared at 70 °C, and further increasing in temperature decreased the nanoscrolls yield. Nevertheless, the packing density increased in the process, thereby demonstrating that the packing density not only promoted nanoscrolls transformation but also prevented the progress.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号