首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics simulations of the hydration of poly(vinyl methyl ether): Hydrogen bonds and quasi-hydrogen bonds
Authors:RongLiang Wu   Qing Ji   Bin Kong  XiaoZhen Yang
Affiliation:(1) Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
Abstract:Atomistic detailed hydration structures of poly(vinyl methyl ether) (PVME) have been investigated by molecular dynamics simulations under 300 K at various concentrations. Both radial distribution functions and the distance distributions between donors and acceptors in hydrogen bonds show that the hydrogen bonds between the polymer and water are shorter by 0.005 nm than those between water molecules. The Quasi-hydrogen bonds take only 7.2% of the van der Waals interaction pairs. It was found the hydrogen bonds are not evenly distributed along the polymer chain, and there still exists a significant amount (10%) of ether oxygen atoms that are not hydrogen bonded to water at a concentration as low as 3.3%. This shows that in polymer solutions close contacts occur not only between polymer chains but also between chain segments within the polymer, which leads to inefficient contacts between ether oxygen atoms and water molecules. Variation of the quasi-hydrogen bonds with the concentration is similar to that of hydrogen bonds, but the ratio of the repeat units forming quasi-hydrogen bonds to those forming hydrogen bonds approaches 0.2. A transition was found in the demixing enthalpy at around 30% measured by dynamic testing differential scanning calorimetry (DTDSC) for aqueous solutions of a mono-dispersed low molecular weight PVME, which can be related to the transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ∼27%. The transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ∼27% can be used to explain the demixing enthalpy transition at 30% at a molecular scale. In addition, at the concentration of 86%, each ether oxygen atom bonded with water is assigned 1.56 water molecules on average, and ‘free’ water molecules emerge at the concentration of around 54%. Supported by the National Natural Science Foundation of China (Grant Nos. 20474073, 20490220, 20674090 and 90612015) and National Major Basic Research Project (Grant No. G1999064800)
Keywords:poly(vinyl methyl ether)(PVME)  molecular dynamics  computer simulation  hydrogen bond  quasi-hydrogen bond
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号