首页 | 本学科首页   官方微博 | 高级检索  
     


A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy
Authors:Fabao Luo  Jun Yin  Feng Gao  Lun Wang
Affiliation:1. Anhui Key Laboratory of Chemo/biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People’s Republic of China
Abstract:In our previous study, we have prepared aminated fluorescent silica nanoparticles doped with fluorescein isothiocyanate (FITC) (FSNPs) for the sensing of γ-globulin. Compared with conventional organic dyes, FSNPs show superiorities such as excellent photostability, good water solubility, and biocompatibility, which are in favor of improving the stability and sensitivity of sensors. To extend the application of FSNPs, a convenient and effective method for non-enzyme fluorescent sensor of hydrogen peroxide (H2O2) is introduced based on the synchronous fluorescence technique. The sensor includes two-step reactions, typical redox reaction between KI and H2O2 and iodination reaction between I2 produced by the first step reaction and FITC doped in the network of silica nanoparticles, which induce the fluorescence quenching of FSNPs. The results show that the fluorescence signal of FSNPs linearly decreases with the trace amounts of hydrogen peroxide added in the range 5–80 μM with a detection limit of 0.8 μM under the optimal experimental conditions. The method is simple and sensitive and can be applied to the determination of trace amounts of H2O2. Good recovery data were obtained for the assay of H2O2 in river water by standard addition method with high accuracy and reliability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号