首页 | 本学科首页   官方微博 | 高级检索  
     


THE DISLOC ATION EQU ATIONS OF A SIMPLE CUBIC CRYSTAL IN THE ISOTROPIC APPROXIMATION-A SOLVABLE MODEL
Authors:Ruiping Liu    Shengqiang Lu    Rui Wang
Affiliation:1. College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2. School of Information and Engineering, Wenzhou Medical College, Wenzhou 325035, China
3. School of Physics, Chongqing University, Chongqing 400044, China
Abstract:The dislocation equations of a simple cubic lattice have been obtained by using Green’s function method based on the discrete lattice theory with the coefficients of the secondorder difierential terms and the integral terms have been given explicitly in advance. The simple cubic lattice we have discussed is a solvable model, which is obtained according to the lattice statics and the symmetry principle and can verify and validate the dislocation lattice theory. It can present unified dislocation equations which are suitable for most of metals with arbitral lattice structures. Through comparing the results of the present solvable model with the dislocation lattice theory, it can be seen that, the coefficients of integral terms of the edge and screw components we obtain are in accordance with the results of the dislocation lattice theory, however, the coefficient of the second-order difierential term of the screw component is not in agreement with the result of the dislocation lattice theory. This is mainly caused by the reduced dynamical matrix of the surface term, which is the essence to obtain the dislocation equation. According to the simple cubic solvable model, not only the straight dislocations but also the curved dislocations, such as the kink, can be investigated further.
Keywords:solvable model  dislocation equation  Green’s function  discrete effect
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号