首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of Hofmeister effects on the kinetic stability of proteins
Authors:Broering James M  Bommarius Andreas S
Affiliation:School of Chemical & Biomolecular Engineering, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363, USA.
Abstract:Dissolved salts are known to affect properties of proteins in solution including solubility and melting temperature, and the effects of dissolved salts can be ranked qualitatively by the Hofmeister series. We seek a quantitative model to predict the effects of salts in the Hofmeister series on the deactivation kinetics of enzymes. Such a model would allow for a better prediction of useful biocatalyst lifetimes or an improved estimation of protein-based pharmaceutical shelf life. Here we consider a number of salt properties that are proposed indicators of Hofmeister effects in the literature as a means for predicting salt effects on the deactivation of horse liver alcohol dehydrogenase (HL-ADH), alpha-chymotrypsin, and monomeric red fluorescent protein (mRFP). We find that surface tension increments are not accurate predictors of salt effects but find a common trend between observed deactivation constants and B-viscosity coefficients of the Jones-Dole equation, which are indicative of ion hydration. This trend suggests that deactivation constants (log k(d,obs)) vary linearly with chaotropic B-viscosity coefficients but are relatively unchanged in kosmotropic solutions. The invariance with kosmotropic B-viscosity coefficients suggests the existence of a minimum deactivation constant for proteins. Differential scanning calorimetry is used to measure protein melting temperatures and thermodynamic parameters, which are used to calculate the intrinsic irreversible deactivation constant. We find that either the protein unfolding rate or the rate of intrinsic irreversible deactivation can control the observed deactivation rates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号