LEED and Auger investigations of Cu (111) surface |
| |
Authors: | L.H. JenkinsM.F. Chung |
| |
Affiliation: | Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A. |
| |
Abstract: | After ultrahigh vacuum bake-out, electropolished Cu (111) surfaces were shown by Auger analysis to be contaminated by C, N, O, S and Cl. Other than C and S, which were contained in the bulk, the impurities were introduced by surface preparation; but all were easily removed by light Ar ion bombardment. Heating to ≈ 750°C caused diffusion of C and S from the bulk to the extent that a clear diffraction pattern corresponding to a √7 × √7 structure was produced by S on the surface. At ≈ b 900°C evaporation of Cu occurred to an observable degree, and S and C could no longer be detected on the surface. Auger analysis of clean Cu surfaces showed many details of the LMM and MMM types of transitions. Kinetic energies of all observed Auger electrons were in excellent agreement with calculated values. Also, the ≈ 62 eV MMM peak was resolved into two components related to the small differences in the M2 and M3 energy levels. The LMM transitions were classified according to their intensities, which could be rationalized on the basis of Coster-Kronig transitions and transition probabilities, as L3MM > L2MM > L1MM. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|