首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of terahertz conductivity in ZnSe nanocrystal investigated with optical-pump terahertz-probe spectroscopy
Authors:Gaofang Li  Xin Xue  Xian Lin  Sannan Yuan  Naiyun Tang  Fenghong Chu  Haoyang Cui  Guohong Ma
Institution:1. Laser Zentrum Hannover e.V., Hollerithallee 8, 30419, Hannover, Germany
Abstract:The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号