首页 | 本学科首页   官方微博 | 高级检索  
     检索      


TRANSIENT PHENOMENA IN THE PULSE RADIOLYSIS OF RETINYL POLYENES—7. RADICAL ANIONS OF VITAMIN A AND ITS DERIVATIVES
Authors:K Bhattacharyya  K Bobrowski    S Rajadurai  P K Das  
Institution:Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
Abstract:Abstract— Upon e--pulse irradiation in nonprotic solvents, all- trans retinol (ROH) and retinylmethyl ether (ROMe) form transient species (τ= 0.5–7μs, λmax=575–590 nm) identifiable as radical anions. Similar species are also formed upon laser pulse photoexcitation of these retinyl derivatives in the presence of N,N-dimethylaniline in acetonitrile. In contrast, electron transfer or attachment to all- trans retinyl acetate (ROAc) and palmitate (ROPa) results in 'instantaneous' loss of carboxylate anions from electron adducts giving the retinylmethyl radical (R-, λmax= 395 nm, τk > 100 μ,s); the radical anions in these cases are too short-lived to be detected by nanosecond pulse radiolysis. The lifetimes of radical anions of ROH and ROMe are very sensitive to water and alcohols (e.g. kq = 107 M -1 s-1 with methanol as quencher for ROH- in tetrahydrofuran). Based on these findings, the spectral dissimilarity of the one-electron reduction products from ROH and ROAc in alcohols and aqueous micelles becomes explainable in terms of fast formation of protonated radical anions (RH(OH), τ1/2, > 100 μs, λmax=370–375 nm) in the case of ROH and of retinylmethyl radical via loss of AcO- from radical anion in the case of ROAc. In tetrahydrofuran, the complexation of ROH- with cations such as Na+ and Bu4N+ affects the relative importance of its major decay modes, namely, protonation and dehydroxylation, the latter process being significantly enhanced by the presence of Na+.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号