首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Green Synthesis of Silver Nanoparticles Using Acacia farnesiana (Sweet Acacia) Seed Extract Under Microwave Irradiation and Their Biological Assessment
Authors:S Yallappa  J Manjanna  S K Peethambar  A N Rajeshwara  N D Satyanarayan
Institution:1. Department of Industrial Chemistry, Kuvempu University, Shankaraghatta, 577451, Karnataka, India
2. Department of Biochemistry, Kuvempu University, Shankaraghatta, 577451, Karnataka, India
3. Department of Pharmaceutical Chemistry, P.G. Centre, Kuvempu University, Kadur, 577548, Karnataka, India
Abstract:In the present study, Acacia farnesiana (Sweet acacia) seed extract is used to reduce Ag+ → Ag0 under microwave irradiation. The formation of silver nanoparticles (AgNPs) is monitored by recording the UV–Vis absorption spectra for surface plasmon resonance (SPR) peak at ~450 nm. The absorbance of SPR increases linearly with increasing temperature of the reaction mixture. Rapid reduction of silver ions occurred to form AgNPs, 80–90 % yield in about 150 s. A marginal decrease in pH and increase in solution potential (E) of the reaction mixture during the formation of AgNPs are in agreement with the proposed mechanism. XRD pattern of the AgNPs agree with the fcc structure of Ag metal, and the calculated crystallite size is ~17 nm. FT-IR and solid-state 13C NMR spectra indicate the functional groups of flavonones and terpenoids (biomolecules from plant extract) which are adsorbed on AgNPs, thereby the present method led to in situ biofunctionalization/bio-capping of AgNPs. TG analysis shows the thermal decomposition of these plant residues present on AgNPs at about 250 °C. The spherical shape of the particles with a diameter (?) in the range of ~15–20 nm is evident from FE-SEM image. Elemental analysis by EDX analysis confirms the presence of Ag as the only major element. The in vitro antibacterial screening of AgNPs shows that these bio-capped AgNPs have higher inhibitory action for E. coli and S. aureus followed by B. subtilis and P. aeruginosa. In addition, AgNPs show very good antioxidant property.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号