首页 | 本学科首页   官方微博 | 高级检索  
     


Extracting the mechanisms and kinetic models of complex reactions from atomistic simulation data
Authors:Yanze Wu  Huai Sun  Liang Wu  Joshua D. Deetz
Affiliation:School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China, 200240
Abstract:Determining reaction mechanisms and kinetic models, which can be used for chemical reaction engineering and design, from atomistic simulation is highly challenging. In this study, we develop a novel methodology to solve this problem. Our approach has three components: (1) a procedure for precisely identifying chemical species and elementary reactions and statistically calculating the reaction rate constants; (2) a reduction method to simplify the complex reaction network into a skeletal network which can be used directly for kinetic modeling; and (3) a deterministic method for validating the derived full and skeletal kinetic models. The methodology is demonstrated by analyzing simulation data of hydrogen combustion. The full reaction network comprises 69 species and 256 reactions, which is reduced into a skeletal network of 9 species and 30 reactions. The kinetic models of both the full and skeletal networks represent the simulation data well. In addition, the essential elementary reactions and their rate constants agree favorably with those obtained experimentally. © 2019 Wiley Periodicals, Inc.
Keywords:ReaxFF  directed relation graph  reaction mechanism  reaction model  skeletal mechanism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号