首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling halogen bonding with planewave density functional theory: Accuracy and challenges
Authors:Shi Jun Ang  Cher Tian Ser  Ming Wah Wong
Institution:1. Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore;2. NUS Graduate School for Integrative Sciences and Engineering, University Hall, Tan Chin Tuan Wing, #04-02, 21 Lower Kent Ridge, Singapore 119077, Singapore
Abstract:Inspired by the recent interest of halogen bonding (XB) in the solid state, we detail a comprehensive benchmark study of planewave DFT geometry and interaction energy of lone-pair (LP) type and aromatic (AR) type halogen bonded complexes, using PAW and USPP pseudopotentials. For LP-type XB dimers, PBE-PAW generally agrees with PBE/aug-cc-pVQZ(?pp) geometries but significantly overbinds compared to CCSD(T)/aug-cc-pVQZ(-pp). Grimme's D3 dispersion corrections to PBE-PAW gives better agreement to the MP2/cc-pVTZ(-pp) results for AR-type dimers. For interaction energies, PBE-PAW may overbind or underbind for weaker XBs but clearly overbinds for stronger XBs. D3 dispersion corrections exacerbate the overbinding problem for LP-type complexes but significantly improves agreement for AR-type complexes compared to CCSD(T)/CBS. Finally, for periodic XB crystals, planewave PBE methods slightly underestimate the XB lengths by 0.03 to 0.05 Å. © 2019 Wiley Periodicals, Inc.
Keywords:halogen bonding  planewave DFT  non-covalent interactions  CCSD(T)  benchmark
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号