首页 | 本学科首页   官方微博 | 高级检索  
     


Photophysical properties of fluorescent imaging biological probes of nucleic acids: SAC-CI and TD-DFT Study
Authors:Takafumi Shiraogawa  Gaelle Candel  Ryoichi Fukuda  Ilaria Ciofini  Carlo Adamo  Akimitsu Okamoto  Masahiro Ehara
Affiliation:1. Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto, 615-8245 Japan

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520 Japan;2. Institut de Recherche de Chimie Paris, PSL Research University, CNRS, Chimie ParisTech, 11 rue Pierre et Marie Curie, Paris, F-75005 France;3. Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan;4. SOKENDAI, The Graduate University for Advanced Studies, Nishigonaka, Myodaiji, Okazaki, 444-8585 Japan

Abstract:Recently, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probe, which shows strong emission in the near-infrared region via hybridization to the target DNA and/or RNA strand, has been developed. In this work, photophysical properties of the chromophores of these probes and the fluorescent mechanism have been investigated by the SAC-CI and TD-DFT calculations. Three fluorescent cyanine chromophores whose excitation is challenging for TD-DFT methods, have been examined regarding the photo-absorption and emission spectra. The SAC-CI method well reproduces the experimental values with respect to transition energies, while the quantitative prediction by TD-DFT calculations is difficult for these chromophores. Some stable structures of H-aggregate system were computationally located and two of the configurations were examined for the photo-absorption. The present results support for the assumption based on experimental measurement in which strong fluorescence is due to the monomer unit in nearly planar structure and its suppression of probes is to the H-aggregates of two exciton units. Stokes shifts of these three chromophores were qualitatively reproduced by the theoretical calculations, while the energy splitting due to H-aggregate in the hybridized probe was slightly overestimated. © 2018 Wiley Periodicals, Inc.
Keywords:fluorescent probe  cyanine dye  H-aggregate  SAC-CI  TD-DFT
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号