首页 | 本学科首页   官方微博 | 高级检索  
     检索      


C60 in intense short pulse laser fields down to 9 fs: excitation on time scales below e-e and e-phonon coupling
Authors:Shchatsinin Ihar  Laarmann Tim  Stibenz Gero  Steinmeyer Günter  Stalmashonak Andrei  Zhavoronkov Nick  Schulz Claus Peter  Hertel Ingolf V
Institution:Max-Born-Institut, Max-Born Strasse 2a, D-12489 Berlin, Germany.
Abstract:The interaction of C60 fullerenes with 765-797 nm laser pulses as short as 9 fs at intensities of up to 3.7 x 10(14) W cm(-2) is investigated with photoion spectroscopy. The excitation time thus addressed lies well below the characteristic time scales for electron-electron and electron-phonon couplings. Thus, energy deposition into the system is separated from energy redistribution among the various electronic and nuclear degrees of freedom. Insight into fundamental photoinduced processes such as ionization and fragmentation is obtained from the analysis of the resulting mass spectra as a function of pulse duration, laser intensity, and time delay between pump and probe pulses, the latter revealing a memory effect for storing electronic energy in the system with a relaxation time of about 50 fs. Saturation intensities and relative abundances of (multiply charged) parent and fragment ions (C60(q+), q=1-6) are fingerprints for the ionization and fragmentation mechanisms. The observations indicate that for final charge states q>1 the well known C60 giant plasmon resonance is involved in creating ions and a significant amount of large fragments even with 9 fs pulses through a nonadiabatic multielectron dynamics. In contrast, for energetic reasons singly charged ions are generated by an essentially adiabatic single active electron mechanism and negligible fragmentation is found when 9 fs pulses are used. These findings promise to unravel a long standing puzzle in understanding C60 mass spectra generated by intense femtosecond laser pulses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号