1 Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, U.S.A.
Abstract:
We consider the scattering of an incident pulse from an interface separating two fluids. The interface can be either an elastic membrane or a two-fluid interface with surface tension. By considering the limit where the ratio of acoustic wavelength to the surface wavelength is small, we systematically derived a boundary condition relating the scattered wave and the surface deformation. This condition is local and can be used to derive a partial differential equation for the deformation of the interface. This equation includes the contribution of the acoustic waves induced by the motion of the interface and once it is solved it can be used to determine the scattered field. At leading order in our analysis we find the plane wave approximation. The addition of the next order terms results in an on surface condition equivalent to that of Kriegsmann and Scandrett. We present numerical calculations to show that our results are in good agreement with the exact numerical solution as well as that of Kriegsmann and Scandrett. Physical situations where the conditions of our analysis are valid are presented.