首页 | 本学科首页   官方微博 | 高级检索  
     


Empirical model selection in generalized linear mixed effects models
Authors:Christian Lavergne  Marie-José Martinez  Catherine Trottier
Affiliation:(1) Institut de Mathématiques et de Modélisation de Montpellier, UMR CNRS 5149, Equipe de Probabilités et Statistique, Université Montpellier II, Cc 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Abstract:This paper focuses on model selection in generalized linear mixed models using an information criterion approach. In these models in general, the response marginal distribution cannot be analytically derived. Thus, for parameter estimation, two approximations are revisited both leading to iterative model linearizations. We propose simple model selection criteria adapted from information criteria and based on the linearized model obtained at convergence of the algorithm. The quality of derived criteria are evaluated through simulations.
Keywords:Generalized linear models  Random effects  Model selection  Information criterion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号