首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rate and mechanism of the reversible formation of cationic (eta3-allyl)-palladium complexes in the oxidative addition of allylic acetate to palladium(0) complexes ligated by diphosphanes
Authors:Amatore C  Gamez S  Jutand A
Institution:Ecole Normale Supérieure, Département de Chimie, UMR CNRS 8640, Paris, France. amatore@ens.fr
Abstract:The oxidative addition of the allylic acetate, CH2=CH-CH2-OAc, to the palladium(o) complex Pd0(P,P)], generated from the reaction of Pd(dba)2, with one equivalent of P,P (P,P = dppb = 1,4-bis(diphenylphosphanyl)butane, and P,P = dppf = 1,1'-bis(diphenylphosphanyl)ferrocene), gives a cationic (eta3-allyl)palladium(II) complex, (eta3-C3H5)Pd(P,P)+]. with AcO as the counter anion. This reaction is reversible and proceeds through two successive equilibria. The overall equilibrium constants have been determined in DMF. Compared with PPh3, the overall equilibrium lies more in favor of the cationic (eta3-allyl)palladium(II) complex when bidentate P,P ligands are considered in the order: dppb > dppf > PPh3. The reaction proceeds via a neutral intermediate complex (eta2-CH=CH-CHCH2-OAc)Pd0(P,P)], which has been kinetically detected. The rate constants of the successive steps have been determined in DMF by UV spectroscopy and conductivity measurements. The overall complexation step of the Pd0 by the allylic acetate C=C bond is faster than the oxidative addition/ionization step which gives the cationic (eta3-allyl)palladium(II) complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号