首页 | 本学科首页   官方微博 | 高级检索  
     


Deep reinforcement learning based IRS-assisted mobile edge computing under physical-layer security
Abstract:In this paper, we investigate an intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) network under physical-layer security, where users can partially offload confidential and compute-intensive tasks to a computing access point (CAP) with the help of the IRS. We consider an eavesdropping environment, where an eavesdropper steals information from the communication. For the considered MEC network, we firstly design a secure data transmission rate to ensure physical-layer security. Moreover, we formulate the optimization target as minimizing the system cost linearized by the latency and energy consumption (ENCP). In further, we employ a deep deterministic policy gradient (DDPG) to optimize the system performance by allocating the offloading ratio and wireless bandwidth and computational capability to users. Finally, considering the impacts from different resources, based on DDPG, seeing our optimization strategy as one criterion, we designed other criteria with different resource allocation schemes. And some simulation results are given to demonstrate that our proposed criterion outperforms other criteria.
Keywords:Mobie edge computing  Intelligent reflecting surface  DRL  Physical-layer security
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号