Cataracting-centrifuging transition investigation using nonspherical and spherical particles in a rotary drum through CFD simulations |
| |
Affiliation: | 1. Institute of Chemistry, Federal University of Goiás - UFG, Campus Samambaia, Goiânia, GO, 74690-900, Brazil;2. School of Chemical Engineering, Federal University of Uberlândia - UFU, Campus Santa Mônica, Uberlândia, MG, 38408-144, Brazil;1. College of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China;2. Qingdao Institue of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China;3. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;1. Dalian National Laboratory for Clean Energy, National Engineering Laboratory for MTO, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China;1. Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China;2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China;3. NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China |
| |
Abstract: | This paper aims to systematically investigate the cataracting-centrifuging transition in a rotary drum involving spherical and nonspherical particles by using the Multiphase Granular Eulerian Model (MGEM). The effects of drum length and particle shape on the cataracting-centrifuging transition behavior were analyzed. The results showed that drum length plays an important role in the cataracting-centrifuging transition, although most related works in the literature do not consider this. The particle shape also significantly affects the cataracting-centrifuging transition behavior. Nonspherical particles required lower rotation speeds than spherical particles to reach the centrifuging condition. The particle shape was shown to be related to the critical solid fraction (αsc) from Schaeffer’s model, although further investigations are required to completely correlate particle spherecity with critical solid volume fractions. |
| |
Keywords: | Frictional viscosity MGEM model Particle shape Drum length Drum flow regimes |
本文献已被 ScienceDirect 等数据库收录! |
|