首页 | 本学科首页   官方微博 | 高级检索  
     


Minimum energy configurations on a toric lattice as a quadratic assignment problem
Abstract:
We consider three known bounds for the quadratic assignment problem (QAP): an eigenvalue, a convex quadratic programming (CQP), and a semidefinite programming (SDP) bound. Since the last two bounds were not compared directly before, we prove that the SDP bound is stronger than the CQP bound. We then apply these to improve known bounds on a discrete energy minimization problem, reformulated as a QAP, which aims to minimize the potential energy between repulsive particles on a toric grid. Thus we are able to prove optimality for several configurations of particles and grid sizes, complementing earlier results by Bouman et al. (2013). The semidefinite programs in question are too large to solve without pre-processing, and we use a symmetry reduction method by Permenter and Parrilo (2020) to make computation of the SDP bounds possible.
Keywords:Quadratic assignment problem  Semidefinite programming  Discrete energy minimization  Symmetry reduction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号