首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photovoltaic and impedance properties of dye-sensitized solar cell based on nature dye from beetroot
Abstract:The present study involves fabrication and photovoltaic characterization including impedance properties of dye-sensitized solar cells based on natural dye from beetroot. The electrode of the cell was prepared with commercial Fluorine-doped Tin Oxide glass with 100 μm layer of nanostructured TiO2 whereas, the counter electrode consisted of platinum-coated glass. Fresh juice was extracted from beetroot to use as dye. The dye exhibited high absorption in visible range. Photovoltaic measurements of the solar cell gave a short circuit current density (Jsc) of 130 μA/cm2 and an open-circuit voltage (VOC) of 0.38 V under AM 1.5 illumination intensity. The VOC and Jsc showed linear behavior at higher values of illumination intensities. The conductance-voltage, the capacitance-voltage and the series resistance voltage characteristics of the dye solar cell was measured at frequency range from 5 kHz to 5 MHz to study performance of the dye-sensitized solar cells with natural dyes.
Keywords:Solar cell  Photovoltaic  Impedance spectroscopy  Dye  Beetroot
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号