首页 | 本学科首页   官方微博 | 高级检索  
     


Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes
Authors:Jean-Daniel Boissonnat  Leonidas J. Guibas  Steve Y. Oudot
Affiliation:(1) INRIA, Géométrica Team, 2004 route des lucioles, 06902 Sophia-Antipolis, France;(2) Dept. Computer Science, Stanford University, Stanford, CA 94305, USA
Abstract:It is a well-established fact that the witness complex is closely related to the restricted Delaunay triangulation in low dimensions. Specifically, it has been proved that the witness complex coincides with the restricted Delaunay triangulation on curves, and is still a subset of it on surfaces, under mild sampling conditions. In this paper, we prove that these results do not extend to higher-dimensional manifolds, even under strong sampling conditions such as uniform point density. On the positive side, we show how the sets of witnesses and landmarks can be enriched, so that the nice relations that exist between restricted Delaunay triangulation and witness complex hold on higher-dimensional manifolds as well. We derive from our structural results an algorithm that reconstructs manifolds of any arbitrary dimension or co-dimension at different scales. The algorithm combines a farthest-point refinement scheme with a vertex pumping strategy. It is very simple conceptually, and it does not require the input point sample to be sparse. Its running time is bounded by c(d)n 2, where n is the size of the input point cloud, and c(d) is a constant depending solely (yet exponentially) on the dimension d of the ambient space. Although this running time makes our reconstruction algorithm rather theoretical, recent work has shown that a variant of our approach can be made tractable in arbitrary dimensions, by building upon the results of this paper. This work was done while S.Y. Oudot was a post-doctoral fellow at Stanford University. His email there is no longer valid.
Keywords:Manifold  Reconstruction  Weighted Delaunay triangulation  Restricted Delaunay triangulation  Witness complex
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号