首页 | 本学科首页   官方微博 | 高级检索  
     


Triiodide quenching of ruthenium MLCT excited state in solution and on TiO2 surfaces: an alternate pathway for charge recombination
Authors:Clark Christopher C  Marton Andras  Srinivasan Ramya  Narducci Sarjeant Amy A  Meyer Gerald J
Affiliation:Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Abstract:The excited states of [Ru(bpy)2(deeb)](PF6)2, where bpy is 2,2-bipyridine and deeb is 4,4'-(CO2CH2CH3)2-2,2'-bipyridine, were found to be efficiently quenched by triiodide (I3-) in acetonitrile and dichloromethane. In dichloromethane, I3- was found to quench the excited states by static and dynamic mechanisms; Stern-Volmer analysis of the time-resolved and steady-state photoluminescence data produced self-consistent estimates for the I3- + Ru(bpy)2(deeb)2+ <==> [Ru(II)(bpy)2(deeb)2+,(I3-)]+ equilibrium, K = 51,000 M(-1), and the bimolecular quenching rate constant, kq = 4.0 x 10(10) M(-1) s(-1). In acetonitrile, there was no evidence for ion pairing and a dynamic quenching rate constant of k(q) = 4.7 x 10(10) M(-1) s(-1) was calculated. Comparative studies with Ru(bpy)2(deeb)2+ anchored to mesoporous nanocrystalline TiO2 thin films also showed efficient excited-state dynamic quenching by I3- in both acetonitrile and dichloromethane, kq = 1.8 x 10(9) and 3.6 x 10(10) M(-1) s(-1), respectively. No reaction products for the excited-state quenching processes were observed by nanosecond transient absorption measurements from 350 to 800 nm under any experimental conditions. X-ray crystallographic, IR, and Raman data gave evidence for interactions between I3- and the bpy and deeb ligands in the solid state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号