首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monte Carlo study of small magnetic particles
Authors:V Wildpaner
Institution:1. Atominstitut der ?sterreichischen Hochschulen, Wien, Austria
Abstract:In earlier computer simulation small magnetic particles with nearest neighbor Heisenberg interactions in zero magnetic field have been studied. We now continue these investigations including next nearest neighbor exchange and non zero magnetic fieldsH. The particles treated have spherical shape with a number of spinsN in the range from 33 to 3071. It is shown that the spontaneous magnetization of the particles is rather different from the bulk magnetization. The magnetization process can be accounted for by the Néel theory, if the correct spontaneous magnetization of the particle is used. The distribution of local magnetizations (the magnetic “profile”) was also obtained in various cases. It is shown that the magnetization of very small particles is much more depressed than predicted by the mean field approximation. We introduce an “effective magnetic radius” \(\hat R\) accounting for the reduction of the local magnetization. This magnetic radius is important for the interpretation of experimental results. A distinct dependence of \(\hat R\) on the magnetic field, temperature and the fraction of next nearest neighbor exchange is found. Finally a brief comparison is made with the recent study of magnetic surface properties by Binder and Hohenberg.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号