首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon
Authors:Shu-Guang Cheng
Institution:Department of Physics, Northwest University, Xi'an 710069, People's Republic of China. National Photoelectric Technology and Functional Materials and Application of Science and Technology International Cooperation Base, Xian 710069, People's Republic of China.
Abstract:The spin thermoelectric properties of a zigzag edged ferromagnetic (FM) graphene nanoribbon are studied theoretically by using the non-equilibrium Green's function method combined with the Landauer-Büttiker formula. By applying a temperature gradient along the ribbon, under closed boundary conditions, there is a spin voltage ΔV(s) inside the terminal as the response to the temperature difference ΔT between two terminals. Meanwhile, the heat current ΔQ is accompanied from the 'hot' terminal to the 'cold' terminal. The spin thermopower S?=?ΔV(s)/ΔT and thermoconductance κ?=?ΔQ/ΔT are obtained. When there is no magnetic field, S versus E(R) curves show peaks and valleys as a result of band selective transmission and Klein tunneling with E(R) being the on-site energy of the right terminal. The results are in agreement with the semi-classical Mott relation. When |E(R)|??M, the quantized value of Formula: see text] appears. In the quantum Hall regime, because Klein tunneling is suppressed, S peaks are eliminated and the quantized value of κ is much clearer. We also investigate how the thermoelectric properties are affected by temperature, FM exchange split energy and Anderson disorder. The results indicate that S and κ are sensitive to disorder. S is suppressed for even small disorder strengths. For small disorder strengths, κ is enhanced and for moderate disorder strengths, κ shows quantized values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号