首页 | 本学科首页   官方微博 | 高级检索  
     


Single enzyme nanoparticle for biomimetic CO2 sequestration
Authors:Renu Yadav  Nitin Labhsetwar  Swati Kotwal  Sadhana Rayalu
Affiliation:(1) Environmental Materials Unit, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur, 400 020, India;(2) Department of Biochemistry, R.T.M. Nagpur University, Nagpur, 440 033, India;
Abstract:Nanoparticle technology is being increasingly used in environmental sciences. We prepared single enzyme nanoparticle (SEN) by modifying the surface of carbonic anhydrase (CA) with a thin layer of organic/inorganic hybrid polymer. SEN-CA appears to be improving the stability of free enzyme. CA, as ubiquitously found enzyme, is involved in gaseous CO2 sequestration and is being looked as a promising candidate for combating global warming. We report here physical characterization of SEN-CA using transmission electron microscope (TEM), Fourier-transform infrared analysis (FTIR), X-ray diffraction analysis (XRD), and energy dispersive X-ray (EDX). Average size of SEN-CA particles appears to be in the range of 70–80 nm. We also report the effect of SEN formation on the kinetic parameters of free CA such as Michaelis–Menten constant (K m), maximum reaction velocity (V max), and storage stability of free CA and SEN-CA. The V max of SEN-CA (0.02857 mmol/min/mg) and free enzyme (0.02029 mmol/min/mg) is almost similar. K m has decreased from 6.143 mM for SEN-CA to 1.252 mM for free CA. The stabilization of CA by SEN formation results in improved the half-life period (up to 100 days). The formation of carbonate was substantiated by using gas chromatography (GC). The conversion of CO2 to carbonate was 61 mg of CaCO3/mg of CA and 20.8 mg of CaCO3/mg of CA using SEN-CA and free CA, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号