首页 | 本学科首页   官方微博 | 高级检索  
     


Polyol synthesis of polycrystalline cuprous oxide nanoribbons and their growth chemistry
Authors:Kang-Jung Lo  Hua-Yang Liao  Hsiu-Wei Cheng  Wei-Chun Lin  Bang-Ying Yu  Jing-Jong Shyue  Che-Chen Chang
Affiliation:(1) Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan;(2) Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan;(3) Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan;
Abstract:A facile organic-solution method was developed for the synthesis of two-dimensional cuprous nanostructures. Ribbons as thin as 50 nm were successfully prepared by dissolving CuCl in ethylene glycol before raising the solution temperature to 150°C in air. Transmission electron microscopic studies revealed that the ribbon nanostructures obtained were polycrystalline, with nanocrystals present in the structures mostly less than 25 nm. Selective-area electron diffraction patterns taken from the ribbon nanostructures indicated that the chemical composition of the nanocrystals was Cu2O, though X-ray photoelectron spectrometric analysis showed that the nanostructures also contained the Cu2+ phase. Growth factors including the molecular structure of the solvent and the counter-ion of copper in the precursor that may affect the formation of polycrystalline nanoribbons were examined. More importantly, the detail of chemistry involved in the step-by-step, dimensional growth of copper-based nanostructures in ethylene glycol is presented at the molecular level for the first time using the growth of the Cu2O nanoribbon as an example. Ethylene glycol chelates Cu2+, which is produced from Cu+ undergoing disproportionation reactions, to form tetragonally elongated glycolates. A sequence of nucleophilic substitutions then takes place to bond glycolates together to yield stripe-like polymers before the polymers aggregate via van der Waals force into ribbon nanostructures. The Cu0 produced from the disproportionation reaction is crystallized out within the polymers and oxidized at elevated temperature by the dissolved O2 in the solution to form Cu2O nanocrystals.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号