首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the sum powers of matrices
Authors:L N Vaserstein
Institution:  a Department of Mathematics, The Pennsylvania State University, University Park, PA
Abstract:A theorem of Lagrange says that every natural number is the sum of 4 squares. M. Newman proved that every integral n by n matrix is the sum of 8 (-1)n squares when n is at least 2. He asked to generalize this to the rings of integers of algebraic number fields. We show that an n by n matrix over a a commutative R with 1 is the sum of squares if and only if its trace reduced modulo 2Ris a square in the ring R/2R. It this is the case (and n is at least 2), then the matrix is the sum of 6 squares (5 squares would do when n is even). Moreover, we obtain a similar result for an arbitrary ring R with 1. Answering another question of M. Newman, we show that every integral n by n matrix is the sum of ten k-th powers for all sufficiently large n. (depending on k).
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号