首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cell adhesion and locomotion on microwell-structured glass substrates
Authors:Guan Yanbin  Kisaalita William
Institution:Faculty of Engineering and Biological and Agricultural Engineering Department, University of Georgia, Athens, GA 30602, USA.
Abstract:The purpose of this study was to investigate the effect of microstructured material surface on cell adhesion and locomotion in real-time. ArF excimer laser direct-writing ablation was used to fabricate microwell patterns with precise control of size and spacing on glass. The influence of the ablation process parameters (laser fluence, pulse number and repetition rate) on the micromachining quality (depth, width, aspect ratio and edge effects) of the microwells was established. Human fibroblast cells, as an example of anchorage-dependent cells, were seeded onto the microstructured glass substrate and time-lapse microscopy was used to study cell adhesion and locomotion. The interaction with microstructured materials resulted in fibroblast cell repulsion and the cells exhibited a higher locomotion speed (75.77±3.36 μm/h) on the structures in comparison with plane glass control (54.01±15.53 μm/h). Further studies are needed to firmly establish the potential of microstructuring, for example, in elongating the life spans of implantable devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号