首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective CO2-to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays
Authors:Rui Zhao  Ziyin Zhu  Ting Ouyang  Zhao-Qing Liu
Institution:School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006 P. R. China
Abstract:Electrocatalytic CO2-to-syngas (gaseous mixture of CO and H2) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2-to-syngas at −0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (−0.7 V to −1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Keywords:Bimetallic Catalysts  CO2 Reduction  Electrocatalysis  Syngas Production
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号