首页 | 本学科首页   官方微博 | 高级检索  
     


The chemisorption of hydrogen on Cu(111): A dynamical study
Authors:A. Forni  G. Wiesenekker  E. J. Baerends  G. F. Tantardini
Abstract:Ab initio band-structure calculations within a density functional formalism were performed to compute the binding energy curves of atomic hydrogen with the high-symmetry adsorption sites of the (111) surface of copper. For a two-layer slab of Cu atoms and H coverage equal to 0.25, the binding energies are 2.25, 3.12, and 3.24 eV, for on-top, bridge, and threefold sites, so that the chemisorption of H2 on Cu(111) is exothermic for threefold and bridge sites, but endothermic for on-top sites. Starting from these results, an LEPS potential for the interaction of H2 with the Cu(111) surface was built. In this model potential, the most favored approaches correspond to a H2 molecule parallel to the Cu surface, and for them, the activation barrier is located at the corner between the entrance and the exit channels of the reaction, and its lowest value is 0.6 eV. The LEPS potential was used in quasi-classical trajectories calculations to simulate the adsorption of a beam of H2 molecules on Cu(111). The results show that (a) when H2 is in the ground vibrational state the dissociative adsorption probability Pa increases from 0 to .90 along a roughly sigmoidal curve by increasing the collision kinetic energy from 0.4 to 1.3 eV, and (b) the vibrational energy can be as effective as the translational one in promoting dissociative chemisorption, in agreement with the experimental results. © 1994 John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号