首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental investigation of streamwise velocity fluctuation based on the Reynolds-number dependency in turbulent viscoelastic-fluid flow
Institution:1. Department of Energy Engineering and Science, Nagoya University, Nagoya, 464–8603, Japan;2. Department of Mechanical Engineering, The University of Melbourne, Victoria, 3010, Australia;3. Linné FLOW Center, KTH Mechanics, Stockholm, SE-100 44, Sweden
Abstract:This paper describes an experimental verification of energy supply mechanisms for the streamwise component of the turbulent kinetic energy (TKE) at different Reynolds numbers in viscoelastic-fluid flow. We investigated the characteristics of the streamwise turbulent velocity fluctuation by analyzing the production and turbulent diffusion terms in the TKE transport equation. In addition, we reported on the Reynolds-number dependency in a high Reynolds-number regime where direct numerical simulation cannot demonstrate changes in fluid properties. Based on the experimental verification, we proposed a conceptual model of the energy-exchange term between the TKE and the elastic energy, with focusing on the dependency of the fluid properties on the shear stress. This model is indirectly reflected in the streamwise TKE, the instantaneous velocity field, and the wave number relevant to energy-containing eddies. The main gain term of the TKE switches between the energy-exchange term and the production term dependently on the Reynolds number: as the Reynolds number exceeds the value which provides the maximum drag reduction rate, the production term becomes dominant and the magnitude of streamwise TKE becomes high compared to the water flow case.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号