Synthesis of new OBAN's and further studies on positioning of the catalytic group |
| |
Authors: | Aström Hans Strömberg Roger |
| |
Affiliation: | Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, S-17177, Stockholm, Sweden. |
| |
Abstract: | Two new zinc ion dependent oligonucleotide based artificial nucleases (OBAN's) have been synthesized. These consist of 2'-O-methyl modified RNA oligomers conjugated to 5-amino-2,9-dimethylphenanthroline (neocuproine)via a urea linker. OBAN 4 carries the catalytic group on a linker extending from the C-4 of an internal cytosine moiety. OBAN 5 has two neocuproine units attached, each to linkers extending from the C-5 position of uridine moieties, one placed internally and the other at the at the 5'-end of the oligonucleotide. The key step in the synthesis of the OBAN systems is conjugation of the catalytic group to the respective amino linkers of the modified oligonucleotides. This is achieved by first converting the 5-amino-2,9-dimethylphenanthroline to the phenylcarbamate. The reaction of this neocuproine phenylcarbamate with the oligonucleotide carrying one or two primary aliphatic amines in aqueous buffer (at pH 8.5) leads to nearly quantitative formation of the urea-linked conjugates. Both OBAN systems were found to cleave RNA in the bulged out regions formed from the non-complementary part of the target sequences, in the presence of Zn(II) ions. Differences in efficiency between these and previously reported systems are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|