BTA copper complexes |
| |
Authors: | Friedrich Manfred Gálvez-Ruiz Juan Carlos Klapötke Thomas M Mayer Peter Weber Birgit Weigand Jan J |
| |
Affiliation: | Department of Chemistry and Biochemistry, Ludwig-Maximilian University Munich, Germany. |
| |
Abstract: | Cupric oxide is one of the most important additives used (a) to catalyze decomposition reactions in gas generators to obtain cooler reaction gases, (b) as burning enhancer for ammonium perchlorate-based composite propellants, and (c) as coloring agent in pyrotechnics. In this context, the reaction of Cu(2+) ions in aqueous ammonia solution with bis(tetrazolyl)amine (H(2)bta) was investigated. Depending on the reaction conditions three complexes were obtained: Cu(bta)(NH(3))(2) (1), Cu(bta)(NH(3))(2).H(2)O (2), and (NH(4))(2)Cu(bta)(2).2.5H(2)O (3). The crystal structures of 1 and 2 are discussed with respect to the coordination mode of the dianion of N,N-bis(1(2)H-tetrazol-5-yl)-amine (bta), which mediates in the case of 1 and 2 weak superexchange interactions between the adjacent magnetic transition-metal Cu(II) cations. These antiferromagnetic interactions result from 1D copper chains over an hidden azide end-to-end bridge. Interestingly, the structural arrangement of 1 completely changes in the presence of crystal-bound water. Moreover, some physicochemical properties (e.g., heat of formation, friction, and impact sensitivity, DSC) of these complexes with respect to high-energetic materials are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|