首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chebyshev Solution of the Nearly-Singular One-Dimensional Helmholtz Equation and Related Singular Perturbation Equations: Multiple Scale Series and the Boundary Layer Rule-of-Thumb
Authors:John P Boyd
Institution:(1) Department of Atmospheric, Oceanic and Space Science and Laboratory for Scientific Computation, University of Michigan, 2455 Hayward Avenue, Ann Arbor, MI 48109, USA
Abstract:The one-dimensional Helmholtz equation, epsi2 u xx u=f(x), arises in many applications, often as a component of three-dimensional fluids codes. Unfortunately, it is difficult to solve for epsiLt1 because the homogeneous solutions are expthinspx/epsi), which have boundary layers of thickness O(1/epsi). By analyzing the asymptotic Chebyshev coefficients of exponentials, we rederive the Orszag–Israeli rule 16] that 
$$N \approx {3 \mathord{\left/ {\vphantom {3 {\sqrt \varepsilon  }}} \right. \kern-\nulldelimiterspace} {\sqrt \varepsilon  }}$$
Chebyshev polynomials are needed to obtain an accuracy of 1% or better for the homogeneous solutions. (Interestingly, this is identical with the boundary layer rule-of-thumb in 5], which was derived for singular functions like tanh(x–1]/epsi).) Two strategies for small epsi are described. The first is the method of multiple scales, which is very general, and applies to variable coefficient differential equations, too. The second, when f(x) is a polynomial, is to compute an exact particular integral of the Helmholtz equation as a polynomial of the same degree in the form of a Chebyshev series by solving triangular pentadiagonal systems. This can be combined with the analytic homogeneous solutions to synthesize the general solution. However, the multiple scales method is more efficient than the Chebyshev algorithm when epsi is very, very tiny.
Keywords:Chebyshev polynomials  spectral method  spectral element method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号