首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Internal rotation in methyl silane by avoided-crossing molecular-beam spectroscopy
Authors:WLeo Meerts  Irving Ozier
Institution:Fysisch Laboratorium, Katholieke Universiteit, Toernooiveld, 6525ED Nijmegen, The Netherlands;Department of Physics, University of British Columbia, 6224 Agriculture Road, Vancouver V6T 2A6, Canada
Abstract:The avoided-crossing molecular-beam electric-resonance technique was applied to methyl silane in the ground torsional state. A new type of anticrossing is introduced which breaks the torsional symmetry and obeys the selection rules ΔJ = 0, K = +1 /a3 ?1. For these “barrier” anticrossings, the values of the crossing fields Ec yield directly the internal rotation splittings; the Ec are independent of the difference (A-B) in the rotational constants. Such anticrossings were observed for J from 1 to 6. Studies were also conducted of several “rotational” anticrossings (J, K) = (1, ±1) /a3 (2, 0) for which Ec does depend on (A-B). The normal rotational transition (J, K) = (1, 0) ← (0, 0) was observed in the ground torsional state using the molecular beam spectrometer. The present data on CH328SiH3 were combined with Hirota's microwave spectra and analyzed with the torsion-rotation Hamiltonian including all quartic centrifugal distortion terms. In addition to evaluating B and several distortion constants, determinations were made of the moment of inertia of the methyl top Iα = 3.165(5) amu-Å2, the effective rotational constant Aeff = 56 189.449(32) MHz, and the effective height of the threefold barrier to internal rotation V3eff = 592.3359(73) cm?1. The correlations leading to these two effective constants are discussed and the true values of A and V3 are determined within certain approximations. For the isotopic species CH330SiH3, barrier and rotational anticrossings were observed. The isotopic changes in A and V3 were determined, as well as an upper limit to the corresponding change in Iα.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号