首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microwave sea return at moderate to high incidence angles
Abstract:Abstract

Bragg scattering is widely recognized as the dominant mechanism by which the ocean surface backscatters microwave radiation, but efforts to identify other, non-Bragg sources of this scattering have been pursued for many years. Non-Bragg backscattering from the sea surface is known to occur at incidence angles close to 0° and 90°. In this paper Bragg scattering is shown to explain most features of sea surface backscatter for incidence angles between about 20° and 80°, except when it predicts very small mean cross sections. The often-quoted evidence for non-Bragg scattering in this incidence angle range is that σ o (HH) is occasionally found to be larger than or equal to σ o (VV) for short integration times. We show that because of fading this is not evidence of non-Bragg scattering. For incidence angles up to about 50°, standard Bragg/composite surface scattering theory yields probabilities of finding σ o (HH)>σ o (VV) that are only slightly smaller than those found experimentally. As the incidence angle increases, greater differences between theoretical and experimental probabilities are found. The addition of Bragg scattering from bound, tilted waves brings theory into excellent agreement with experiment at incidence angles near 45° but still cannot account adequately for the probability of σ o (HH)>σ o (VV) or observed σ o (HH) cross sections at higher incidence angles. We show that the addition of a small, non-Bragg cross section that is independent of the incidence angle and polarization, brings simulated cross sections and probability distributions into good agreement with data. A possible source of this small, non-Bragg sea return is sea spray just above the air/sea interface.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号