首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New film-forming poly(urethane-amide-imide) block copolymers: influence of soft block on membrane properties for the purification of a fuel octane enhancer by pervaporation
Authors:Anne Jonquières  Robert Clément  Pierre Lochon
Institution:Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, ENSIC, 1 rue Grandville, BP 451, 54 001 Nancy Cedex, France
Abstract:A new family of eight poly(urethane-amide-imide) (PUAI) block copolymers with the same hard block and different soft blocks were synthesized in two steps from a dianhydride monomer containing amide functions (4,4′-methylene-bis(trimellitic anhydride-N-phenylamide)) and α,ω-dihydroxy telechelic oligomers which varied in both chemical structure (polyethers: PEG, PTMG, PPG; polyester: PCL) and molar weight (MW ≅ 600 or 1000 g/mol). The PUAI were obtained in high yields (ranging from 81 to 98 wt%) and with reduced viscosities which varied from 0.36 to 0.84 dL/g (for C = 1 mg/mL in DMF at 25 °C). Their characterization by FTIR and 1H NMR fully confirmed their chemical structure. Their solubility was typically limited to a few wt/vol% even in strong apolar diprotic solvents like DMF and NMP. This particular feature showed the very strong physical cross-linking of their very stiff hard block and enabled to cast membranes capable of withstanding exposure to many common organic solvents. Systematic permeability experiments showed that the PUAI membranes could be used to separate the azeotropic mixture EtOH (20 wt%)/ETBE very easily, with interesting prospects for the purification of ETBE (a fuel octane enhancer used instead of lead derivatives in the European Community). An analysis in terms of structure-property relationships pointed out that the soft block molar weight and polarity were two key parameters for the optimization of selective permeability. The best compromise was obtained with the soft block PEG1000. The corresponding polymer led to performances so far outstanding for polyamideimides with a very high flux of more than 1.1 kg/h m2 for a normalized thickness of 5 μm at 50 °C and a selectivity α = 22.7 in the high range for this kind of separation.
Keywords:Polyurethaneamideimide  Step-growth polymerization  Membrane
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号