首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-Dependent Density Functional Theory Study on Electronic Excited-State Hydrogen Bonding of Benzonitrile in Methanol Solution
Authors:Dapeng Yang  Ruiquan Qi
Institution:1. Physics Laboratory, North China University of Water Resources and Electric Power, Zhengzhou, 450011, China
2. School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
Abstract:In this work, the time dependent density functional theory (TDDFT) method was used to investigate the hydrogen bonding dynamics of benzonitrile (PhCN) as hydrogen acceptor in hydrogen donating solvent methanol (MeOH). The ground-state geometry optimizations and the electronic transition energies of the isolated PhCN and MeOH monomers and the two hydrogen-bonded PhCN–MeOH dimers are calculated by the DFT and TDDFT method respectively. According to the results, the hydrogen bond takes the responsibility of the geometric structure change and electronic transfer of the molecules involved. As well, the intermolecular hydrogen-bond C≡N···H–O is strengthened in electronically excited states of the hydrogen-bonded PhCN–MeOHa (planar structure) and PhCN–MeOHb (perpendicular structure) as a result of the lower excitation energy and the electronic spectral redshifts. Despite the different structure, the effects of hydrogen bond on PhCN–MeOHa and PhCN–MeOHb are considered the same, which serves as a proof that geometric structure has little contribution to the structural and energy change in hydrogen-bonded complexes. However, in high-lying singlet states, the structure can cause the divergence of electronic transition rate between the two hydrogen-bonded complexes, even if within the same transition path. What’s more, the extent of hydrogen bond effect on PhCN and MeOH is different between the low-lying excited states and the high-lying excited states.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号