首页 | 本学科首页   官方微博 | 高级检索  
     


The statistical significance of selected sense–antisense peptide interactions
Authors:Christopher J. R. Illingworth  Sree V. Chintipalli  Stefano A. Serapian  Andrew D. Miller  Vaclav Veverka  Mark D. Carr  Christopher A. Reynolds
Affiliation:1. Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom;2. Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom;3. Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, United Kingdom;4. Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
Abstract:Sense and antisense peptides, encoded by sense and corresponding antisense DNA strands, are capable of specific interactions that could be a driving force to mediate protein–protein or protein–peptide binding associations. The complementary residue hypothesis suggests that these interactions are founded upon the sum of pairwise interactions between amino acids encoded by corresponding sense and antisense codons. Despite many successful experimental results obtained with the hypothesis, however, the physicochemical basis for these interactions is poorly understood. We examined the potential of the hypothesis for general identification of protein–protein interaction sites, and the possible role of the hypothesis in determining folding in a broad set of protein structures. In addition, we performed a structural study to investigate the binding of a complementary peptide to IL‐1F2. Our results suggest that complementary residue pairs are no more frequent or conserved than average in protein–protein interfaces, and are statistically under‐represented amongst contacting residue pairs in folded protein structures. Although our structural results matched experimental observations of binding between the peptide and IL‐1F2, complementary residue interactions do not appear to be dominant in the bound structure. Overall, our data do not allow us to conclude that the complementary residue hypothesis accounts for specific sense–antisense peptide interactions. © 2012 Wiley Periodicals, Inc.
Keywords:MI pairs  sense peptides  antisense peptides  molecular interactions  IL‐1F2  complementary residue pairs  protein–  protein interactions  protein peptide interaction  glide  docking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号