首页 | 本学科首页   官方微博 | 高级检索  
     


Solid-solid phase transitions: interface controlled reactivity and formation of intermediate structures
Authors:Leoni Stefano
Affiliation:Max‐Planck‐Institut für Chemische Physik fester Stoffe, N?thnitzer Strasse 40, 01187 Dresden, Germany, Fax: (+49)?351‐4646‐3002
Abstract:Finding new pathways to novel materials is an open challenge in modern solid-state chemistry. Among the reasons that still prevent a rational planning of synthetic routes is the lack of an atomistic understanding at the moment of phase formation. Metastable phases are, in this respect, powerful points of access to new materials. For the synthetic efforts to fully take advantage of such peculiar intermediates, a precise atomistic understanding of critical processes in the solid state in its many facets, that is, nucleation patterns, formation and propagation of interfaces, intermediate structures, and phase growth, is mandatory. Recently we have started a systematic theoretical study of phase transitions, especially of processes with first-order thermodynamics, to reach a firm understanding of the atomistic mechanisms governing polymorphism in the solid state. A clear picture is emerging of the interplay between nucleation patterns, the evolution of domain interfaces and final material morphology. Therein intermediate metastable structural motifs with distinct atomic patterns are identified, which become exciting targets for chemical synthesis. Accordingly, a new way of implementing simulation strategies as a powerful support to the chemical intuition is emerging. Simulations of real materials under conditions corresponding to the experiments are shedding light onto yet elusive aspects of solid-solid transformations. Particularly, sharp insights into local nucleation and growth events allow the formulation of new concepts for rationalizing interfaces formed during phase nucleation and growth. Structurally different and confined in space, metastable interfaces occurring during polymorph transformations bring about distinct diffusion behavior of the chemical species involved. More generally, stable structures emerge as a result of the concurrence of the transformation mechanism and of chemical reactions within the phase-growth fronts.
Keywords:molecular dynamics  particle diffusion  phase transitions  reaction mechanisms  solid‐state reactions
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号