首页 | 本学科首页   官方微博 | 高级检索  
     


Minimax risk overl p -balls forl p -error
Authors:David L. Donoho  Iain M. Johnstone
Affiliation:(1) Department of Statistics, Stanford University, 94305 Stanford, CA, USA
Abstract:Summary Consider estimating the mean vector theta from dataNn(theta,sgr2I) withlq norm loss,qgE1, when theta is known to lie in ann-dimensionallp ball,pisin(0, infin). For largen, the ratio of minimaxlinear risk to minimax risk can bearbitrarily large ifp. Obvious exceptions aside, the limiting ratio equals 1 only ifp=q=2. Our arguments are mostly indirect, involving a reduction to a univariate Bayes minimax problem. Whenp, simple non-linear co-ordinatewise threshold rules are asymptotically minimax at small signal-to-noise ratios, and within a bounded factor of asymptotic minimaxity in general. We also give asymptotic evaluations of the minimax linear risk. Our results are basic to a theory of estimation in Besov spaces using wavelet bases (to appear elsewhere).
Keywords:62C20  62F12  62G20
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号