首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combinatorial Sublinear-Time Fourier Algorithms
Authors:M A Iwen
Institution:1. Institute for Mathematics and its Applications (IMA), University of Minnesota, Minneapolis, USA
Abstract:We study the problem of estimating the best k term Fourier representation for a given frequency sparse signal (i.e., vector) A of length Nk. More explicitly, we investigate how to deterministically identify k of the largest magnitude frequencies of ^(A)]\hat{\mathbf{A}} , and estimate their coefficients, in polynomial(k,log N) time. Randomized sublinear-time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving this problem (Gilbert et al. in ACM STOC, pp. 152–161, 2002; Proceedings of SPIE Wavelets XI, 2005). In this paper we develop the first known deterministic sublinear-time sparse Fourier Transform algorithm which is guaranteed to produce accurate results. As an added bonus, a simple relaxation of our deterministic Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best randomized Fourier method (Gilbert et al. in Proceedings of SPIE Wavelets XI, 2005). Finally, the Fourier algorithm we develop here implies a simpler optimized version of the deterministic compressed sensing method previously developed in (Iwen in Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA’08), 2008).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号