首页 | 本学科首页   官方微博 | 高级检索  
     


Non-coding RNAs and a layered architecture of genetic networks
Authors:Vladimir P. Zhdanov
Affiliation:(1) Institute of Applied Mathematics, Middle East Technical University, 06531 Ankara, Turkey;(2) Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
Abstract:In eukaryotic cells, protein-coding sequences constitute a relatively small part of the genome. The rest of the genome is transcribed to non-coding RNAs (ncRNAs). Such RNAs form the cornerstone of a regulatory network that operates in parallel with the protein network. Their biological functions are based primarily on the ability to pair with and deactivate target messenger RNAs (mRNAs). To clarify the likely role of ncRNAs in complex genetic networks, we present and comprehensively analyze a kinetic model of one of the key counterparts of the network architectures. Specifically, the genes transcribed to ncRNAs are considered to interplay with a hierarchical two-layer set of genes transcribed to mRNAs. The genes forming the bottom layer are regulated from the top and negatively self-regulated. If the former regulation is positive, the dependence of the RNA populations on the governing parameters is found to be often non-monotonous. Specifically, the model predicts bistability. If the regulation is negative, the dependence of the RNA populations on the governing parameters is monotonous. In particular, the population of the mRNAs, corresponding to the genes forming the bottom layer, is nearly constant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号