首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Organic fiber reinforced plastics based on complex hybrid matrices including polysulfone and carbon nanotubes as modifiers of epoxy resins
Authors:V I Solodilov  R A Korokhin  Yu A Gorbatkina  A M Kuperman
Institution:(1) Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK;(2) School of Materials, The University of Manchester, Grosvenor Street, Manchester, M13 9LP, UK;
Abstract:Organic Fiber Reinforced Plastics (OFRP) based on aramid fibers are as a rule used in constructions working under extremal conditions. In view of this, the possibility of increasing the resistance of OFRP to destruction by modifying matrices with thermoplastic polymers and carbon nanotubes (CNTs) offers much promise. In this work, we present the results obtained in a study of the properties of OFRP based on Rusar fibers and epoxy matrices containing either CNTs or a thermoplastic (PSK-1 polysulfone) or both these components simultaneously. The data obtained substantiate the possibility of using epoxypolysulfone matrices for the preparation of wound composites. This modification noticeably increases crack and impact resistance of OFRP based on aramid fibers without decreasing the glass transition temperature, as when matrices are plasticized by rubber and active diluents. The strongest effect of polysulfone introduced into an epoxy matrix is observed at a large (20 wt %) content of PSK-1. The modification of epoxypolysulfone matrices by CNTs also increases the shear strength of OFRP and almost does not change the fracture toughness and compression strength. The introduction of CNTs into epoxy matrices is less effective and can increase crack growth resistance of OFRP by approximately 30% only at a large (1%) content of CNTs. Small CNT admixtures (0.3–0.6%) do not influence the fracture toughness. Possible mechanisms of the changes observed are considered.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号