首页 | 本学科首页   官方微博 | 高级检索  
     


Non-linear oscillations of a thin-walled composite beam with shear deformation
Authors:Sebastiá  n P. Machado,C. Martí  n SaraviaFranco E. Dotti
Affiliation:Grupo Análisis de Sistemas Mecánicos, Centro de Investigaciones de Mecánica Teórica y Aplicada, Universidad Tecnológica Nacional FRBB, 11 de Abril 461, B8000LMI Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Argentina
Abstract:A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled composite beam. The model is based on a small strain and large rotation and displacements theory, which is formulated through the adoption of a higher-order displacement field and takes into account shear flexibility (bending and warping shear). In the analysis of a weakly nonlinear continuous system, the Ritz’s method is employed to express the problem in terms of generalized coordinates. Then, perturbation method of multiple scales is applied to the reduced system in order to obtain the equations of amplitude and modulation. In this paper, the non-linear 3D oscillations of a simply-supported beam are examined, considering a cross-section having one symmetry axis. Composite is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The model, which contains both quadratic and cubic non-linearities, is assumed to be in internal resonance condition. Steady-state solution and their stability are investigated by means of the eigenvalues of the Jacobian matrix. The equilibrium solution is governed by the modal coupling and experience a complex behavior composed by saddle noddle, Hopf and double period bifurcations.
Keywords:Shear flexibility   Internal resonance   Composite material   Thin-walled beams
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号