首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observing in-phase single-quantum 15N multiplets for NH2/NH3+ groups with two-dimensional heteronuclear correlation spectroscopy
Authors:Takayama Yuki  Sahu Debashish  Iwahara Junji
Institution:aDepartment of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, 6.614A Basic Science Building, Galveston, TX 77555-0647, USA
Abstract:Two-dimensional (2D) F1-(1)H-coupled HSQC experiments provide 3:1:1:3 and 1:0:1 multiplets for AX(3) and AX(2) spin systems, respectively. These multiplets occur because, in addition to the 2S(y)H(z)(a)-->2S(y)H(z)(a) process, the coherence transfers such as 2S(y)H(z)(a)-->2S(y)H(z)(b) occurring in t(1) period provide detectable magnetization during the t(2) period. Here, we present a 2D F1-(1)H-coupled (1)H-(15)N heteronuclear correlation experiment that provides a 1:3:3:1 quartet for AX(3) spin system and a 1:2:1 triplet for AX(2). The experiment is a derivative of 2D HISQC experiment J. Iwahara, Y.S. Jung, G.M. Clore, Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation. J. Am. Chem. Soc. 129 (2007) 2971-2980] and contains a scheme that kills anti-phase single-quantum terms generated in the t(1) period. The purge scheme is essential to observe in-phase single-quantum multiplets. Applications to the NH(2) and NH(3)(+) groups in proteins are demonstrated.
Keywords:Multiplets  AX3 spin system  AX2 spin system  Heteronuclear correlation  15N
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号