首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes
Authors:Lee Eunice S  Robinson David  Rognlien Judith L  Harnett Cindy K  Simmons Blake A  Bowe Ellis C R  Davalos Rafael V
Institution:Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USA.
Abstract:We present a new way to transport and handle picoliter volumes of analytes in a microfluidic context through electrically monitored electroporation of 10-25 microm vesicles. In this method, giant vesicles are used to isolate analytes in a microfluidic environment. Once encapsulated inside a vesicle, contents will not diffuse and become diluted when exposed to pressure-driven flow. Two vesicle compositions have been developed that are robust enough to withstand electrical and mechanical manipulation in a microfluidic context. These vesicles can be guided and trapped, with controllable transfer of material into or out of their confined environment. Through electroporation, vesicles can serve as containers that can be opened when mixing and diffusion are desired, and closed during transport and analysis. Both vesicle compositions contain lecithin, an ethoxylated phospholipid, and a polyelectrolyte. Their performance is compared using a prototype microfluidic device and a simple circuit model. It was observed that the energy density threshold required to induce breakdown was statistically equivalent between compositions, 10.2+/-5.0 mJ/m2 for the first composition and 10.5+/-1.8 mJ/m2 for the second. This work demonstrates the feasibility of using giant, robust vesicles with microfluidic electroporation technology to manipulate picoliter volumes on-chip.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号