首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydration forces between mica surfaces in electrolyte solutions
Authors:RM Pashley
Institution:Department of Applied Mathematics, Institute of Advanced Studies, Research School of Physical Sciences, The Australian National University, Canberra, A.C.T. 2600, Australia
Abstract:The forces between two molecularly smooth mica surfaces were measured over a range of concentrations in aqueous Li+, Na+, K+ and Cs+ chloride solutions. Deviations from DLVO forces in the form of additional short-range repulsive “Hydration” forces were observed only above some critical bulk concentration, which was different for each electrolyte. These observations are interpreted in terms of the corresponding ion exchange properties at the mica surface. “hydration” forces apparently arise when hydrated cations adsorbed on mica are prevented from desorbing as two interacting surfaces approach. dehydration of the cations leads to a repulsive hydration force. A simple site-binding model was successfully applied to describe the charging behavior of interacting mica surfaces . By subtraction of the DLVO-regulation theory from the total measured force the net hydration force was obtained for mica surfaces apparently fully covered with adsorbed cations. The magnitude of this extra force followed the series Na+ > Li+ > K+ > Cs+ and, in each case, could be described by a double-exponential decay.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号